Optimum volume of bank reserve: forecasting of overdue credit indebtedness using copula models
Abstract
The article propose to consider the possibility of RLUF-copulas application for the creation of joint distributions of overdue credit indebtedness ranks with macroeconomic indicators for the purpose of indebtedness forecasting and also for the definition of optimum volumes of reserve requirements for the corresponding losses. In this research the comparative analysis of multivariate distributions of RLUF-copula estimation with such classical copulas, as FGM-copula, Frank's copula and Gauss's copula is made. In the article the method of maximum likelihood is used for receiving estimates of model parameters. In case of RLUF-copula Bayesian estimates of parameters are received using the Metropolis algorithm with random volatility. Forecasting of bank reserve volumes for all received models is executed in the form of random sample generation by the means of the algorithm of acceptance-deviation for the creation of the corresponding sample of joint distribution using the copula density function. As the result of playing of hundred possible scenarios of indebtedness volumes is obtained the 95% confidence level for the possible volume of credit indebtedness which can fully act as the optimum volume of reserve requirements for the corresponding credit losses.
About the Authors
K. A. KazakovaRussian Federation
A. G. Knyazev
Russian Federation
O. A. Lepekhin
Russian Federation
References
1. Altman E. I., Brady B., Resti A., Sironi A. The link between default and recovery rates: theory, empirical evidence, and implications. Journal of Business, 2005, Vol. 78 (6), p. 2203–2227.
2. Kealhofer S. Portfolio management of default risk. KMV Corporation. 1998. URL: http://www. complexity.ru/papers/999-0000-033.pdf.
3. Morgan J. P. CreditMetrics – technical document. New York, 1997. URL: http://www.creditrisk. ru/publications/files_attached/creditmetrics_techdoc.pdf.
4. Fantatstsini D. Upravleniye kreditnym riskom [Credit risk management]. Prikladnaya ekonometrika [Applied Econometrics], 2008, no. 12 (4), p. 84–137. (In Russ.)
5. Fantatstsini D. Ekonometrichesky analiz finansovykh dannykh v zadachakh upravleniya riskom [Econometric analysis of financial data in problems of risk management]. Prikladnaya ekonometrika [Applied Econometrics], 2009, no. 13 (1), p. 105–138. (In Russ.)
6. Bologov Ya. V. Otsenka riska kreditnogo portfelya s ispolzovaniyem kopula-funktsy [Estimating of credit portfolio risk using copula]. Sinergiya Press [Sinergiya Press], 2013, 22 p. (In Russ.)
7. Salmin S. P., Pyanov D. A. Ispolzovaniye metoda kopul v otsenke kreditosposobnosti grupp vzaimosvyazannykh zayemshchikov [Using method of copula in solvency assessment of groups of interconnected borrowers]. Upravleniye ekonomicheskimi sistemami: elektronny nauchny zhurnal [Management of economic systems: electronic scientific journal], 2013, no. 1. URL: http://www. uecs.ru/uecs49-492013/item/1960-2013-01-31-07-57-10. (In Russ.)
8. Dolati A., Ubeda-Flores M. Some new parametric families of multivariate copulas. International Mathematical Forum, 2006, no. 1, p. 17–25.
9. Skobleva E. I., Knyazev A. G., Lepekhin O. A., Kazakova K. A. Dinamichesky analiz segmentatsii rossyskogo bankovskogo sektora [Dynamic analysis of the segmentation of Russian banking sector]. Sovremennye problemy nauki i obrazovaniya [Modern problems of science and education], 2014, no. 6. URL: http://www.science-education.ru/120-16784. (In Russ.)
10. Hansen B. E. Autoregressive conditional density estimation. International Economic Review, 1994, vol. 35 (3), p. 705–730.
11. Thierry Ane, Loredana Ureche-Rangau and Chiraz Labidi-Makni. Time-varying conditional dependence in Chinese stock markets. Applied Financial Economics, 2008, vol. 18, p. 895–916.
12. Gordeev V. A., Knyazev A. G., Shemyakin A. E. Selection of copula model for inter-market dependence. Model Assisted Statistics and Applications, 2012, vol. 7, p. 315–325.
13. Nelsen R. B. An Introduction to Copulas. New York, Springer, 2006. 269 p.
14. Akhunzhanov R. K., Kangina N. N., Knyazev A. G., Lepekhin O. A. Plotnosti arkhimedovykh kopul i ikh prilozheniya dlya prognozirovaniya kursov valyut [Density of Archimedean copulas and their applications for forecasting of exchange rates]. Prikaspysky zhurnal: upravleniye i vysokiye tekhnologii [Caspian journal: management and high technologies], 2014, no. 2, p. 10–23. (In Russ.)
Review
For citations:
Kazakova K.A., Knyazev A.G., Lepekhin O.A. Optimum volume of bank reserve: forecasting of overdue credit indebtedness using copula models. World of Economics and Management. 2015;15(4):59–76. (In Russ.)