Preview

World of Economics and Management

Advanced search

Mathematical justificaton of research method of fuzzy set properties of Geske model trajectories and its modifications

Abstract

The fuzzy random pairs approach is developed in [1] in order to study fuzzy set properties of random pointwise set mappings. The articles proposes generalization of the fuzzy random pairs approach for research of stochastic processes. The generalization is initiated by an approach to exploration of uncertainty in research project supported with an RFBR grant no. 15-06-06914, which is based on application of the Geske model modification. Mathematical description of the generalization is carried out for an example of a real venture-backed investment project aimed at organization of methyl chloride to ethylene processing.

The generalization essence is in the following: 1) time variable  in a random process  is replaced with a random value , distributed uniformly within a segment , which turns the process  into a bidimensional random value , defined on ; 2) the random value  value is translated into a random pointwise set mapping using the interval translation; 3) in order to translate the random pointwise set mapping into a fuzzy set and to build its membership function a stochastic algorithm is used; 4) for fuzzy set exploration of the resulting pointwise set mapping the fuzzy random pairs approach is used.

The solution of the Geske model is a stochastic process defined on a finite segment of time. The article contains main definitions and adaptations of abstract procedures of fuzzy set approach to the real investment project aimed at organization of methyl chloride to ethylene processing. A detailed research of this project attributes with the use of suggested fuzzy set approach lays beyond the frame of the article and should be the subject of an independent applied research.

About the Authors

A. O. Baranov
Institute of Economics and Industrial Engineering SB RAS, Novosibirsk Novosibirsk State University, Novosibirsk
Russian Federation


E. I. Muzyko
Novosibirsk State Technical University, Novosibirsk
Russian Federation


V. N. Pavlov
4Peter the Great St.-Petersburg Polytechnic University, Saint-Petersburg
Russian Federation


References

1. Halmos P. Teoriya mery [Measure theory]. Moscow, Foreign literature publishing house,

2. 291 p.

3. Kantor G. Trudy po teorii mnozhestv [Works on set theory]. Moscow, Science, 1985. 431 p.

4. Kuratovskij K. Topologiya [Topology]. Moscow, WORLD publishing house, 1966, 606 p.

5. Pavlov A. V., Pavlov V. N. Nechyotko-sluchajnye metody issledovaniya neopredelyonnosti i ikh makroekonomicheskiye prilozheniya [Fuzzy random methods of uncertainty research and their macroeconomic applications]. A. G. Korzhubayev (Ed.). Novosibirsk, SB RAS Publ., 2012, 185 p.

6. Pavlov A. V. Interval'nyj metod postroyeniya nechyotkikh makroeconomicheskikh pokazateley. [Interval method of fuzzy macroeconomic indicators building]. Sci. Dis. Novosibirsk, IEIE SB RAN, 2004, 118 p.

7. Pavlov A. V., Pavlov V. N. Metod nechyotko-sluchainykh par v issledovanii neopredelennosti. [Fuzzy random pairs approach in uncertainty research]. Innovatsionnyj potentsial ekonomiki Rossii: sostoyaniye i pespectivy: sb. nauch. tr. / A. V. Alekseyev, L. K. Kazantseva (Eds.). [Innovative potential of Russian economy: current state and perspectives: proceedings]. Novosibirsk, IEOPP SO RAN, 2013, p. 326–337.

8. Baranov A. O., Muzyko E. I., Pavlov V. N. Ekonomicheskaya effektivnst' innovatsionnykh proyektov s venchurnym finansirovaniyem [Economic efficiency of innovative venture backed projects]. Vestnik Finansovogo universiteta [Bulletin of Financial University], 2015, no. 5 (89), p. 105–115.

9. Black F., Scholes M. The Pricing of Options and Corporate Liabilities. Journal of Political

10. Economy, 1973, no. 81 (3), p. 637–659.

11. Geske R. The valuation of compound options. Journal of Financial Economics, 1979, no. 7 (1), p. 63–81.

12. Hsu Y.-W. Staging of Venture Capital Investment: A Real Options Analysis. University of Camnridge, JIMS, 2002, p. 1–47.

13. Gikhman I. I., Skorokhod A. V. Vvedeniye v teoriyu sluchaynykh protsessov. [Introduction into the theory of random processes]. Moscow, Science, 1977, 569 p.


Review

For citations:


Baranov A.O., Muzyko E.I., Pavlov V.N. Mathematical justificaton of research method of fuzzy set properties of Geske model trajectories and its modifications. World of Economics and Management. 2016;16(2):78–88. (In Russ.)

Views: 69


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2542-0429 (Print)
ISSN 2658-5375 (Online)