Preview

World of Economics and Management

Advanced search

Including the Information Background into the DSGE Model of the Russian Economy with Adaptive Learning

https://doi.org/10.25205/2542-0429-2023-23-4-60-82

Abstract

Within the framework of this study, a method is being developed for applying the results of the information background analysis model to the expectations formation model of adaptively learning economic agents in the general formulation of the DSGE model. This method is tested on a small DSGE model of the Russian economy with adaptive learning, developed by us at the IEIE SB RAS. Using this model as an example, we show that the proposed method improves the fit of the data simulated by the model to economic statistics, which makes it possible to use this model to predict macroeconomic indicators, comparing different scenarios for economic development depending on the future information background sentiment. We conclude that news flow management has an impact on the economy performance and can potentially be used as an element of economic policy, whose consequences can be evaluated using our method. The versatility of the method proposed in this paper allows its application to be extended to a wide range of DSGE models used by central banks in most countries of the world.

About the Authors

D. V. Kolyuzhnov
Novosibirsk State University; Institute of Economics and Industrial Engineering SB RAS
Russian Federation

Dmitriy V. Kolyuzhnov, PhD (Economics), Associate Professor; Researcher, 

Novosibirsk.

Scopus ID 55940049500.



E. D. Kolyuzhnov
Novosibirsk State University
Russian Federation

Egor D. Kolyuzhnov, 4th year Undergraduate Student, Information Technologies Department,

Novosibirsk.



M. V. Lyakhnova
Institute of Economics and Industrial Engineering SB RAS; Bank of Russia
Russian Federation

Margarita V. Lyakhnova, Postgraduate Student; Chief economist,

Novosibirsk; Moscow.



References

1. Christoffel K., Coenen G., and Warne A. The New Area-Wide Model of the Euro Area: A Micro-Founded Open-Economy Model for Forecasting and Policy Analysis // ECB Working Paper Series. 2008. No. 944. 124 p. URL: https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp944.pdf

2. Christiano L., Rostagno M., and Motto R. Financial factors in economic fluctuations // ECB Working Paper Series. 2010. No. 1192.

3. Edge R., Kiley M., and Laforte J.-P. A Comparison of Forecast Performance Between Federal Reserve Staff Forecasts, Simple Reduced-Form Models, and a DSGE Model // Journal of Applied Econometrics. 2010. Vol. 25. P. 720-754.

4. Chung H. T., Kiley M. T., and Laforte J.-P. Documentation of the Estimated, Dynamic, Optimization-based (EDO) Model of the U.S. Economy: 2010 Version // Finance and Economics Discussion Series Working Paper. 2010. No. 19.

5. Fenton P., Murchison S. C. ToTEM: The Bank of Canada's New Projection and Policy-Analysis Model // Bank of Canada Review. 2006. Vol. 2006. P. 5-18

6. Dorich J., Johnston M., Mendes R., Murchison S., and Zhang Y. ToTEM II: An Updated Version of the Bank of Canada’s Quarterly Projection Model // Canadian Economic Analysis Department. Technical Report 100. Bank of Canada. 2013. No. 100.

7. Harrison R., Nikolov K., Quinn M., Ramsay G., Scott A. Thomas R. The Bank of England Quarterly Model // Bank of England Publications, 2005.

8. Burgess S., Fernandez-Corugedo E., Groth C., Harrison R., Monti F., Theodoridis K., and Waldron M. The Bank of England’s Forecasting Platform: COMPASS, MAPS, EASE and the Suite of Models // Bank of England working Paper. 2013. No. 471.

9. Brubakk L., Anders T., Maih J., Olsen K., Ostnor M. Finding NEMO: Documentation of the Norwegian economy model // Norwegian Central Bank, Staff Memo. 2006. No. 2006-6. 85 p. URL: https://www.econstor.eu/bitstream/10419/210178/1/nb-staff-memo2006-06.pdf

10. Pesenti P. The Global Economy Model: Theoretical Framework // IMF Staff Papers. 2008. Vol. 55. No. 2. P. 243 – 284.

11. Krepcev D., Seleznev S. DSGE-model' rossijskoj ekonomiki s bankovskim sektorom // Seriya dokladov ob ekonomicheskih issledovaniyah CB RF. 2017. No. 27. pp. 1 – 82.

12. Krepcev D., Seleznev S. DSGE-model’ rossijskoj ekonomiki s malym kolichestvom uravnenij // Seriya dokladov ob ekonomicheskih issledovaniyah CB RF. 2016. No. 12. pp. 1 – 53.

13. Sargent T. J. Bounded Rationality in Macroeconomics. Oxford; N.Y.: Oxford University Press, Clarendon Press, 1993.

14. Evans G. W., Honkapohja S. Learning and Expectations in Macroeconomics // Princeton, NJ.: Princeton University Press. 2001.

15. Kolyuzhnov D. V., Lyahnova M. V. Small DSGE Model of the Russian Economy with Heterogeneous Adaptive Learning. World of Economics and Management, 2022, vol. 22, No. 3, pp. 66–87. (in Russ.)

16. Bogomolova A. S., Kolyuzhnov D. V. Economic Dynamics under Heterogeneous Adaptive Learning: Aggregate Economy Sufficient Conditions for Stability World of Economics and management, 2020, vol. 20, no. 1, pp. 128–153. (in Russ.)

17. Giannitsarou Ch. Heterogeneous learning // Review of Economic Dynamics. 2003. Vol. 6. pp. 885–906.

18. Goodfellow I., Bengio Y., Courville A. Deep Learning // MIT Press, 2016.

19. Porter M.F. An algorithm for suffix stripping // Program: Electronic Library and Information Systems. 1980. Vol. 14 (3), pp. 130-137.

20. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J. Distributed representations of words and phrases and their compositionality // Proceedings of the 26th International Conference on Neural Information Processing Systems. 2013. pp. 3111-3119.

21. Hochreiter, S., Schmidhuber, J. Long Short-Term Memory // Neural computation. 1997. Vol 9 (8), pp. 1735-1780.

22. Kim Y. Convolutional Neural Networks for Sentence Classification // Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2014. pp. 1746–1751.

23. Kolyuzhnov D. V., Lyahnova M. V. DSGE-models for short-term forecasting of Russian economy // Forecasting Models and Methods: Asian Russia in the Country's Economy / edited by A.O. Baranov, V.I. Suslov. Novosibirsk: SB RAS: IEIE SBRAS. 2023. Ch. 2.1.– pp. 16-87. (in Russ.)


Review

For citations:


Kolyuzhnov D.V., Kolyuzhnov E.D., Lyakhnova M.V. Including the Information Background into the DSGE Model of the Russian Economy with Adaptive Learning. World of Economics and Management. 2023;23(4):60-82. (In Russ.) https://doi.org/10.25205/2542-0429-2023-23-4-60-82

Views: 382


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2542-0429 (Print)
ISSN 2658-5375 (Online)