Preview

World of Economics and Management

Advanced search

EVALUATION OF THE IMPACT OF PROFILE DIRECTION TO THE INDICATORS OF THE ACTIVITIES OF RUSSIAN UNIVERSITIES

https://doi.org/10.25205/2542-0429-2018-18-3-81-90

Abstract

Since the Ministry of Education and Science of the Russian Federation began monitoring the university effectiveness, such a radical approach to cleaning up the higher education system from "useless educational institutions" has become a permanent subject of criticism in the scientific community. The main argument is that most of the monitoring indicators do not reflect the effectiveness of the institution in terms of the ratio of the output to the cost. Nevertheless, these indicators characterize different aspects of the activities of universities. And the results of monitoring allow to obtain statistical estimates of the degree of influence on these indicators of the specialization of the university (the structure of the student contingent in the areas of training). However, due to the specifics of the compositional data as covariates it is not possible to estimate the parameters of the regression model using the standard least squares technique. In addition, the original data are heterogeneous and contain outliers. To solve these problems, a number of robust principal component regressions are estimated. The estimation results are analyzed in terms of consistency. It is revealed that an increase in the share of mathematical, natural-science, information and engineering specialties in the structure of student training on average leads to an increase in the indicators of scientific activity, while for the economy and tourism, the opposite trend is characteristic. The larger share of the economy and tourism in the structure of specialties corresponds, on the average, to the smaller average score of the Unified State Examination and higher values of the indicator of financial and economic activity. Thus, the availability of these specialties in the structure of training is justified from the point of view of the financial status of universities.

About the Author

A. Yu. Timofeeva
Novosibirsk State Technical University
Russian Federation


References

1. Винокуров М. А. Мониторинг эффективности российских вузов: совершенствование методологии // Изв. Иркут. гос. экон. академии. 2013. № 6. С. 5-11.

2. Гуртов В. А., Питухин Е. А., Насадкин М. Ю. Эффективность деятельности вузов с позиции трудоустройства выпускников // Высшее образование в России. 2013. № 10. С. 19-27.

3. Прохоров С. Г., Свирина А. А. Мониторинг эффективности вузов и перспективы малых городов РФ // Высшее образование в России. 2014. № 11. С. 121-125.

4. Докучаев И. И. Мониторинг эффективности вузов России как радикальный метод реформы отечественного образования: политико-правовые аспекты // Учен. зап. Комсомольского-на-Амуре гос. техн. ун-та. 2015. Т. 2 (23). № 3. С. 91-95.

5. Сироткин Г. В. Элементы новой системы управления качеством образования, оценки качества образования и эффективности любого типа вуза // Технические науки - от теории к практике. 2013. № 26. С. 43-50.

6. Чернышов С. Революционная целесообразность // Эксперт-Сибирь. 2018. 24 апр. URL: http://expertsib.ru/article/5419.

7. Варшавская Е. Я. Российские работники с высшим образованием: анализ образовательных специальностей // Вопросы статистики. 2016. № 9. С. 65-74.

8. Reina D. G. et al. Improving discovery phase of reactive ad hoc routing protocols using Jaccard distance // The Journal of Supercomputing. 2014. Т. 67, № 1. С. 131-152.

9. Hampel F. R., Ronchetti E. M., Rousseeuw P. J., Stahel W. A. Robust statistics: the approach based on influence functions. John Wiley & Sons, 2011.

10. Hron K., Filzmoser P., Thompson K. Linear regression with compositional explanatory variables // Journal of Applied Statistics. 2012. Vol. 39. P. 1115-1128.

11. Egozcue J. J., Pawlowsky-Glahn V., Mateu-Figueras G., Barcelo-Vidal C. Isometric log-ratio transformations for compositional data analysis // Mathematical Geology. 2003. Vol. 35. No. 3. P. 279-300.

12. Aitchison J. The statistical analysis of compositional data // Journal of the Royal Statistical Society. Series B (Methodological). 1982. Vol. 44. P. 139-177.

13. Tsagris M. Regression analysis with compositional data containing zero values // Chilean Journal of Statistics. 2015. Vol. 6. No. 2. P. 47-57.

14. Timofeeva A. Yu. Robust principal component regression on compositional covariates with application to educational monitoring // Applied methods of statistical analysis. Nonparametric methods in cybernetics and system analysis (AMSA'2017): proc. of the intern. workshop, Krasnoyarsk, 18-22 Sept. 2017. Novosibirsk: NSTU Publ., 2017. P. 241-248.

15. Bair E., Hastie T., Paul D., Tibshirani R. Prediction by supervised principal components // Journal of the American Statistical Association. 2006. Vol. 101. No. 473. P. 119-137.


Review

For citations:


Timofeeva A.Yu. EVALUATION OF THE IMPACT OF PROFILE DIRECTION TO THE INDICATORS OF THE ACTIVITIES OF RUSSIAN UNIVERSITIES. World of Economics and Management. 2018;18(3):81-90. (In Russ.) https://doi.org/10.25205/2542-0429-2018-18-3-81-90

Views: 100


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2542-0429 (Print)
ISSN 2658-5375 (Online)