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Abstract

Recently, advances in computer technology and data recording and storage have made high-frequency fi-
nancial data readily available to researchers. As a result, the volatility literature has steadily progressed
toward the use of higher-frequency data. However, the move towards the use of higher-frequency financial
data in the estimation of volatility of financial returns has resulted in the development of many realised
volatility measures of asset return variability based on a variety of different assumptions and functional
forms and thus making theoretical comparison and selection of the estimators for empirical applications
very difficult if not impossible. This article provides an empirical review on the performance of estimators
of quadratic variation/integrated variance based on high-frequency data to aid their application in empiri-
cal analysis. The result of the review shows that no single estimator works best in all situations; however,
the more sophisticated realised measures, in particular the TSRV and KRV, are superior to the other esti-
mators in terms of their estimation accuracy in the presence of market microstructure noise.
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Annomayus
B mocienHee BpeMs JOCTHXEHHS B 00NACTH KOMITBIOTEPHBIX TEXHOJIOTHIA, 3aIIMCH U XPAaHEHUs JaHHBIX
HO3BOJIMIIN ClIeNaTh (PUHAHCOBBIE NaHHBIE JNOCTYIHBIMHU Ul MccienoBareneil. B pesymbrare nureparypa
0 BOJIATHJIBHOCTH CTaJla HEYKJIOHHO Pa3BUBAThCS B CTOPOHY MCIIONI30BAHHS Yallle TIPEeI0CTaBIAEMBIX (Pu-
HAHCOBBIX JaHHBIX. OZIHAaKO MepexoJ| K MCIOoNb30BaHHIO (DMHAHCOBBIX JIAHHBIX C O0Jee BBICOKOH cTere-
HBIO NIEPHOJUYHOCTH TIPH OLIEHKE BOJATUIBHOCTH (PMHAHCOBOM JOXOMHOCTH NpUBEN K pa3paboTke MHO-
I'MX PEalM30BaHHBIX MOKa3aTesleil BONATUIBHOCTH M3MEHUYMBOCTH JOXOAHOCTH aKTUBOB, OCHOBAHHEIX HA
MHOXKECTBE Pa3JIMYHBIX JAOMYLICHHH W (YHKIHOHAIBHBIX (POPM, TEM CaMbIM KpaiHe 3aTpyHss poBeJie-
HME TEOPETHYECKUX CPAaBHEHMH M BBIOOP OLEHOK I SMIMPUUYECKUX NPUIIOKeHHH. B 310l craThe nmpen-
CTaBJIeH SMIMPHYECKUH 0030p 3P(HEKTUBHOCTH OLEHOK KBAJpPAaTHYHON BapHalyy / WHTETPUPOBAHHON
JIMCIIEPCHH Ha OCHOBE BBICOKOYACTOTHBIX JAHHBIX JUIA YNPOLIEHHS MX NPUMEHEHHUs B SMIIMPUYECKOM
aHanuse. B 0630pe mokasaHo, 4TO HeJb3s BBIIEIUTh HU OJTHOTO MX PACCMOTPEHHBIX OLEHIIMKOB, KOTOPbIH
paboTain OBl JIydIlle OCTAJBHEIX BO BCEX CUTYAIHsAX, OJHAKO OOJIEE CIIOKHBIE PACUEThl OIIEHKH BOJIATHIIb-
HOCTH, B yacTHOCTH Ha ocHoBe TSRV n KRV, npeBocxoasaT Apyrue aHajJord ¢ TOYKH 3pEHHsS TOYHOCTH
OLIEHKHU B NPUCYTCTBUM PHIHOYHOTO MHKPOCTPYKTYPHOTO IIyMa.
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KBaJpaTUYHAas Bapualys, MHTETPUPOBAaHHAs JUCIEPCHs, peai30BaHHas JUCIEPCHs, PeaJn30BaHHas BO-
JIaTUNIBHOCTB, PEaIn30BaHHas AMCHEPCHs MO JBYM IIKallaM, pPealM30BaHHAs JUCIEpPCHs sA]pa, peaan3o-
BaHHAs KBAaHTHIIbHAS JIUCTICPCHS, PEaM30BaHHAS JUCTIEPCHS UaNa30Ha, Pealn30BaHHas AUCIEPCUs IPOo-
JIOJDKUTENIBHOCTH, PeaIM30BaHHas IBYXCTETICHHAs IUCTIEPCHs, pOOACTHBIC OIICHKH CKa4yKa

Hna yumupoeanus
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JIaHHBIX. DMIUpUUecKuii 0030p // Mup sxonomukn u ynpasienus. 2020. T. 20, Ne 3. C. 48-69. (Ha aHr.
a3.) DOI 10.25205/2542-0429-2020-20-3-48-69

1. Introduction

“Volatility is central to many applied issues in finance and financial engineering,
ranging from asset pricing and asset allocation to risk management” [1, p. 106]. Proper
appreciation of volatility and its dynamics is central to asset pricing. As the main meas-
ure of risk in finance, volatility is important in the determination of optimum portfolios,
the pricing and hedging of derivative, the determination of a firm’s exposure to various
risk factors and the compensation it can expect to earn from those risk exposures. Vola-
tility is also important in the search for trading and investment opportunities which guar-
antee an attractive risk-return trade-off. “Traditionally, researchers who wanted to ex-
tract and forecast financial volatility had to rely on data recorded at only moderate
intervals: daily, for instance, or even monthly. But recently, data at much more frequent
intervals — high-frequency data — have become increasingly available.” [3, p. 294].
High-frequency financial data usually refers to observation sampled at a time horizon
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smaller than a trading day. Improvement in computer technology and data recording and
storage have made these data sets readily available to researchers. Consequently, the
volatility literature has steadily progressed towards the use of higher-frequency data.
Thus, an exciting new area of research now involves estimating, modelling and forecast-
ing conditional volatility and correlation using high frequency intra-day data. The main
advantage of using high-frequency financial data to estimate volatility is in the increased
quality of volatility forecast. High frequency data has been demonstrated to improve our
ability to understand and forecast financial volatility.

However, the move towards the use of higher-frequency financial data in the estima-
tion of volatility of financial returns has resulted in the development of numerous real-
ized volatility estimators. These estimators are based on a variety of different assump-
tions about the price process and take many different functional forms. Additionally, the
new estimators are based on different sampling schemes and price series, for example,
one may be based upon sampling in calendar time with trade price while another utilizes
tick time sampling with quote price. Also, some of the realized volatility estimators fur-
ther require choices about tuning parameters such as a kernel bandwidth or ‘‘block size’
for their practical application. These, as well as other tractability issues often prohibit the
theoretical asymptotic comparison of the various estimators. Since it is difficult to theo-
retically compare the different estimators, we must rely on empirical performance of the
estimators to determine the most appropriate estimator for any given asset or empirical
application.

In view of the above, the main goal of this article is to provide an empirical review
on the performance of estimators of quadratic variation/integrated variance based on
high-frequency data. In other to achieve the above goal, the following specific objectives
were established:

1) to discuss the most popular and the most recent approaches to estimate quadratic
variation/ integrated variance based on various characteristics of high-frequency finan-
cial data;

2) to summarize the asymptotic properties of the realized volatility estimators;

3) to provide an empirical evaluation of the performance of the realized volatility
estimators based on the result of recent studies.

This review is particularly important for practitioners and researchers in the areas of
asset pricing, asset allocation and risk management as far as their empirical analysis are
concerned. The review in this article differs from existing ones in that, in addition to the
theoretical review, it also provides an empirical evaluation of the estimation accuracy of
the realized measures.

The rest of the paper is organised as follows. Section 2 presents a theoretical review
of the most popular and the most recent estimators of quadratic variation together with
their large sample properties. An empirical evaluation of the estimators based on the
result of recent studies is presented in Section 3. In section 4, we draw conclusion.

2. Review of Estimators of Quadratic Variation/Integrated Variance
2.1 Realized Volatility (RV)

Let S; represent the price process of a financial asset. Let us also assume that the
process X; = log S, is governed by an It6 process
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aX; = u,dt + o.B;

where u, is the drift coefficient, o, denotes the instantaneous volatility of X, (the returns
process) and B, is a standard Brownian motion. Our aim is to estimate the volatility of
the log price process given above. When g, is assumed to be a (continuous) stochastic
process, the object of interest is the quadratic variation (QV) or integrated variance (I1V),

T

X, X)r = | o2(t)dt
|

over a fixed time interval [0, T]. According to the volatility literature (see [4,5,6] etc, for
example), a natural estimator of (X, X), for example, over a single time interval [0,T] is
realized volatility or realized variance (RV) which is defined as the sum of all the
squared intraday log returns in [0,T]

n

X XTr = ) (Xeyy = Xe)’

=1

The above estimator is justified by the theoretical results in stochastic processes stat-
ing that

n T
plimZ(Xti+1 - Xti)2 = f of dt
i=1 0

as the sampling frequency increases. Thus, according to the above theory, realized vola-
tility constructed from the highest-frequency data should give the best possible estimate
for integrated volatility.

Andersen [5] showed that the realized variance computed using all data available is a
consistent estimator of IV in the absence of market microstructure noise such that

RVt(“”) 5 1V,. Barndor-Nielsen and Shephard [6] showed the consistency of the RV es-
timator and derived its asymptotic distribution as:

Jm

d
RVAL — [V,) > N(0,1)

1
(
J210,

with

1
Q= fa4(t+‘r— 1)dz

0
denoting the integrated quarticity (1Q). To facilitate the application of the above asymp-
totic result, Barndor_Nielsen and Shephard [7] introduced the concept of realized power
variation that allows us to estimate 1Q via the realized quarticity (RQ):

ng

¢
QR =3 ) 7

i=0
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such that

1 d
Jne—=(RV©@ —1v,) - N(0,1)
2
FRQM

can be used for large n.
2.2 Two Scales Realized Volatility (TSRV) Estimator

Although realized volatility consistently estimate the price variation accumulated
over some time interval, its consistency hinges on increasingly finer sampled high-
frequency returns. In practice, the sampling frequency is limited by the actual quotation
or transaction frequency. Moreover the very high frequency prices are contaminated by
market microstructure effects such as bid-ask bounce effects, price discreteness etc.,
leading to biases in realized volatility (Pigorsch, Pigorsch, Popov [7], Andersen et al.
[4]; Barndorff-Nielsen and Shephard [8]).

According to the high frequency volatility literature (see for example [2], [7], [9]
[10]), when the observed log price at time t, Y;, is contaminated by market microstruc-
ture noise or measurement error, Y; can be taught of as comprising of a latent efficient /
true price, X; , and a microstructure noise, ¢;, that is:

Yt:Xt‘I'St

As before, our interest is to estimate the quadratic variation, (X, X); = foT o?(t)dt
over a fixed time period [0, T]. A natural estimator of (X, X) is realized volatility

n

[v, Y]y = Z(Ytiﬂ - Yti)z

i=1

In the absence of microstructure noise, [Y,Y]; is a consistent estimator of (X, X)r.
However, Y; is contaminated by market microstructure noise and ignoring the noise will
lead to serious problems. With microstructure noise, after suitable scaling, RV con-
structed from the observed log-returns is a consistent and asymptotically normal estima-
tor but of the quantity 2nE[¢]? instead of (X, X), the object of interest.

Zhang, Mykland and Ait-Sahalia [9] introduced the Two Scales Realized Volatility
(TSRV) to consistently estimate (X, X); (quadratic variation) in the presence of market
microstructure noise. The construction of the TSRV estimator is based on subsampling,
averaging and bias-correction. The estimator computes a “subsampled RV on one or
more slower time scales and then combine with RV constructed on a faster time scale to
correct bias due to microstructure noise.” [11, p. 3]. Ait-Sahalia and Yu [2] identified the
following steps in the construction of the TSRV estimator:

1) First we partition the original grid of observation times, G = {t,, ..., t,,} into sub-
samples, G¥, k =1,.......K ,where n/K — cas n — . For example, for ¢ Dstart at
the first observation and take an observation every 5 minutes; for G, start at the sec-
ond observation and take an observation every 5 minutes, etc.
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2) Next, we average the RVs computed for each subsample. So far as there is a ben-
efit to subsampling, this benefit can be maintained while the variation in the estimator is
reduced through averaging. Averaging over the subsamples the estimators, [Y,Y]% | re-
sults in the average realised volatility estimator:

K
1
[v,Y]%9 = EZ[Y’ Y%
k=1

3) Finally, we correct bias using realized volatility constructed from all the available
intraday returns, that is [Y,Y]%!. The average realized volatility estimator is biased so
a bias correction is carried out using realized volatility constructed from all observations.

Following the above steps, the TSRV can be expressed in the following form:

n
EXFY = Y7 —— [V

[ -
slow time scale fast time scale

The TSRV estimator utilizes all the return data available in its estimation but still
gives consistent estimates of both (X, X) and E[c]?. The estimator is a consistent and
asymptotically unbiased estimator of quadratic variation under the independent noise
assumption. It has the rate of convergence n~'/°. Given an optimal number of subsam-
ples K*, determined as , K* = cm?/3, the asymptotic distribution of the estimator under
11D noise structure assumption is given by

1/2

J— 118
X, X)F ﬁ [X, X]r 7 c_2 E[*]* + J-Ut dt Ztotal
object of interest

due to noise due to dlscretlzatwn

total variance

in the case of equidistant observations. For small samples, a refinement to X, X, can be
obtained as

where

-1
Xy 2 = (1 ——) XXy

The estimators above are obtained under 11D noise structure assumption. In order to
account for possibly dependent noise, Ait-Sahalia, Mykland and Zhang [12] and Zhang
[13] introduced a generalized version of the TSRV estimator also based on the two time
scales idea. In order to obtain the generalized TSRV estimator, we first have to define

the average lag J RV, RV(AL) as shown below.
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ne=J

1 2

AL

RVt,(] == Z (Tt,i+] - rt,i)
J i=0

Next, we construct the generalized TSRV estimator as follows

=(K)
(AMz) _ ng (AL)
R = Rt Ty
t
with 7% = ""TK“,ﬁE’) = ""T]“ 1 <] <K <n,. The adjusted estimator for small

sample is given by

—(0\ 71
Ry @Mzadj) _ (4 _ n, RY/(AMZ)
t 20 t
t

In order to account for serial correlation in the noise, the RVs in the generalized
TSRV estimator above are based on overlapping J-period intraday returns (Pigorsch
[7]). The generalized TSRV estimator is consistent and asymptotically unbiased under
time-dependent noise. However, it has a convergence rate of n~/¢ which is below the
optimal convergence rate of n='/# in the fully parametric case. This led to the introduc-
tion of the multiple time scale estimator (MSRV) by Ait-Sahalia [2]. The multiple time
scale estimator is based on the weighted average of average lag-J RVs computed over
different multiple scales. For suitably selected weights, it attains the optimal conver-
gence rate n~'/* (Pigorsch [7])

2.3 Kernel-Based Estimators

The Kernel-based approach to estimating integrated variance was first used by Zhou
[14] to deal with the problem of microstructure noise in high-frequency data. It was later
generalized by Hansen and Lunde [15]. Hansen and Lunde [15] studied the properties of
Zhou’s estimator and showed that, although unbiased under IID noise structure assump-
tion, the estimator is not consistent. As a result, they proposed to estimate IV by:

H
KRVyg ™" = RV™ 4 2 Z
h=1

m
m—nh'h

- m
with y, = - m (M m
The bias correction factor, m/(m — h), in the above estimator increased the variance
of the estimator, so Hansen and Lunde [15] replaced it by the Bartlett kernel and defined
the new estimator as:

W

H
KRyHLBartlett _ py(m) 4 2 Z 1—-—-
h—1( H+1
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where H = (ﬂ)z/9 and y, is defined as earlier. Nevertheless, their estimator too was
100

inconsistent.

A class of consistent kernel based estimators called realized kernels have been de-
veloped by Barndor-Nielsen, Hansen, Lunde, and Shephard [16]. The realized kernels
are divided into the flat-top and non-flat-top realized kernels. The flat-top realized kernel
of Barndor-Nielsen [16] can be defined as:

H
h—1
KRV ™ = RV 3" (==) + (P + 1)
h=1

where k(x) for €[0; 1] is a deterministic weight function. If k (0) = 1, k (1) = 0 and
H = cm?/3, the estimator is asymptotically mixed normal and converges at rate m'/®
(Barndorff-Nielsen [17]). The constant c is a function of the kernel and the integrated
quarticity and is chosen such that the asymptotic variance of the estimator is minimized.
For the flat-top Bartlett kernel where k(x) = 1 — x, the KRVz™" estimator has the
same asymptotic distribution as the TSRV estimator of Zhang et al.[9] while in the case
of a cubic kernel where k(x) = 1 — 3x2 + 2x2, its asymptotic distribution is similar to
that of the multiple time scale estimator. For smooth kernel functions where
H = cm'%,k'(0) = 0,and k'(1) = 0 , the asymptotic distribution of the estimator is
mixed normal with the convergence rate of m'/4.

The non flat-top realized kernels were introduced for practical application. These re-
alised kernels can be defined as:

H
h
KRVypr™H = RV 4 Z k (ﬁ) Yn + Vn-1)
h=1

with a convergence rate equal to m'/> and a small asymptotic bias:
L "
mS(KRVIE — 1v) S MR(c2|k"(0)|w?, 4ckolQ),

where Ls denotes stable convergence and M'X a mixed normal distribution. Though the
non flat-top realized kernels are robust to serial dependent noise and to dependence be-
tween noise and efficient price, they have a lower convergence rate ( m®/®). The optimal
bandwidth, H, for the non-fat-top realized kernels is given by:
x _ k4 4 s _ (K'(0)? L/s 2 _ w?
H—cf/5m3/,6—(k—o) and & = 7o

where &2 is the signal-to-noise ratio.

The optimal value of H is larger if the variance of the microstructure noise is large in
comparison to the integrated quarticity.

A Parzen kernel that is smooth and always produces non-negative estimates has also
been suggested by Barndor-Nielsen et al. [21]. This kernel is given by:
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1—6x?+6x3for0<x<1/2
k(x) =32(1-x)3 for1/2<x<1
0 forx>1

For the Parzen kernel, ¢* = 3.5134
2.4 Range-Based Estimation

The range-based estimator of volatility has been developed since the 1950s. The es-
timator is based on the extremes from the entire price path and as a result provides more
information than returns sampled at fixed time intervals (Christensen and Podolskij [18];
Pigorsch et al. [7]). It has been found that the squared range based on the daily high and
low is about five times more efficient than the daily squared return but however less
efficient than RV based on a sampling frequency higher than two hours (Pigorsch, et al.
[7D).

Christensen et al. [18] have suggested a realized range-based estimator that replaces
the squared intraday returns by normalized squared. By decomposing the daily time
interval into n non-overlapping intervals of size, A, they obtained the realized range-

based estimator as:
n

1
A 2
RRI = 5— E SZiaam

i=1
Where s,y o™ = MaXo<s rem{P(i-1)/m+t/mn — P(i=1)/m+s/mn} denotes the observed
range over the ith interval and A, ,, = E [s‘,rv_m]./lr‘m is the rth moment of the range of a
standard Brownian motion over a unit interval, with m observed increments and
Swm = MaXogs rem{We/m — Ws/m)} s the range of a standard Brownian motion.

In the estimator above, it is assume that the (log) price process follows a continuous
semimartingale and that A + 1 equidistant prices are observed discretely over a day.
Also because it is assume that the prices are observed discretely, the estimator is biased
downwards. The factor, 4,,,, in the estimator is therefore meant to correct for the
downward bias arising from discretely observed data.

The estimator above has certain advantages over the previous return-and range-based
methods. “RRV,>inspects all data points (regardless of m), whereby we avoid neglecting
information about integrated variance. Second, the efficiency of RRV,3 is several times
that of RV, leading to narrower confidence intervals for integrated variance” [18,
p. 329].

The efficiency of the RRV/ estimator depends on the variance factor, A.
For m,;, = 10 the factor is about 0.7. For continuously observed prices, the factor is 0.4
such that RRV is five times more efficient than RV. For m;, = 1 the efficiency of RV is
obtained [18].

Market microstructure noise corrections of range-based volatility estimators have
been proposed by Martens and van Dijk [19] and Christensen, Podolskij and Vetter [20].
Although bias correction is not as straightforward as in the case of using squared returns,
Christensen et al. [20] suggest that bias reduction can be achieved by imposing simple
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parametric assumptions on the distribution of the noise process and sampling at a one to
two minutes’ frequency.

2.5 Quantile- Based Estimation

The quantile-based approach dates back to Pearson [21], Mosteller [22], Eisenberger
and Posner [23]. These estimators are based on the quantiles of the log returns rather
than the returns themselves; that is, they estimate volatility based on the sample return
quantiles. These estimators exploit the fundamental relationship between quantiles and
the variance of the normal distribution. For example, the 95% quantile of an iid Gaus-
sian distribution with zero mean and variance o2 is 1.6456. So to estimate volatility
based on the quantiles of the log returns, we can invert this relationship. (Christensen,
Oomen and Podolskij [24]).

Christensen et al (2009) have developed a quantile-based realized variance (QRV)
that combines multiple quantiles for each of the m,, intraday subintervals. Construction
of this estimator involves splitting the sample into K non-overlapping blocks with m,;
returns and then the construction of the estimator using the sample quantiles of each of
the K subsamples. The QRV of Christensen et al [24] is defined as:

(mp,Ap)
o 1 :
QRV (miek2) = - PLa Zfzom for 4; € (1/2,1),
1
where

= a= (0-’1,- " ocp)T is a hon-negative vector of quantile weights, with the absolute

values summing to unity;
mrdi _ 2 [ ) ] 2
9 h glim’(( mKKT[(J_l)mK"'l:]mK])ng—AimK’fl(\/m_KKT[(f—l)mKﬂ:jmK])

the realized squared symmetric 1; — quantile of the (scaled) subsample j;

= T. .
»  2=(A...4,) isavector of p return quantiles;
= gl(x) = x; is a function that extracts the [th order statistic from a vector x and
«  p™* s the scaling factor given by:

is

T
v = | [(|U(,1mk)|2 + |U(mk—lmk+1)|2) ] With Ugam, denoting the (4,,, )th or-
der statistic of an independent standard normal sample {U;} :’:”; (Pigorsh et al [7]).
Christensen et al (24) showed that the above estimator is consistent and robust to
jump as K — co. They noted that “as the number of blocks increases, they cover an in-

creasingly short interval so that in the limit and under weak assumptions on the price
process, each block contains at most one jump and volatility within the block is locally

constant” (Christensen et al, [24], p 75). The term q](.mk'l") / vl(mK'A") provides an estima-

tor of the (scaled) return variation over the jth block and the sum across all blocks there-
fore yields a consistent estimator of the 1V. [24, p. 75]
The asymptotic distribution of the QRV is given in Pigorsh et al [7] as
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(Mp,KA) _
Vm(QRVTWED — V) £ 101y
/g(mkia) 10

g(mda) = gTekD g and the ijth element of the p x p matrix @™ s given by
_ v(mkﬂilj)_v(mk,li)v(mk.ﬂj)
®i.j(mkll) =mg -+ 5

where

with

1
(mp.Ay) (Mpdj)
Y Y1

2 272 2 2\2

E [(|U(Aimk)| + [Umi=tger | ) (|U(/1,-mk>| + |U(mk—ajmk+1)| ) ]

For fixed my and in the absence of noise, Christensen et al [28] showed that QRV
estimator converges to the IV at rate m~%/2 while with microstructure noise, the (modi-
fied) estimator converges at rate m~1/* Christensen et al.[24] further showed that the
QRV estimator can be constructed based on overlapping blocks. The authors proved that
such a subsampled version of the estimator further improves its efficiency.

Implementation of the QRV requires choices to be made with regard to the number
of blocks K, or block length, my, the quantiles 4, and the quantile weights a. For a fixed
set of quantiles and block size, Christensen et al. [24] showed that the optimal quantile
weights to minimize the asymptotic variance of QRYV is given by:

~ (Qm,i)‘ll
LT(@’"'Z)_IL

where tis a px1 vector of ones. The selection of quantiles 4 can be based on efficiency
considerations. Christensen et al [24] observed that quantiles near the mode of the distri-
bution are not instructive about the spread of the process while those in the extreme tail
of the distribution are erratic. They recommend that the optimal choice of quantile
should balance the above trade-off in order to obtain much information about the vari-
ance of the distribution. As a result, they identified the optimal quantile as those lying in
the region 0.90 — 0.95.The authors further noted that quantiles outside 0.90-0.95 can be
used to study the covariance structure of the order statistics when p > 1. Concerning the
block size, Christensen et al. [24] noted that small block size provide modest efficiency
gains because they achieve better locality of volatility. However, the gain is insignificant
when multiple quantiles are employed.

Christensen et al [24] have also introduced a QRV that is consistent and asymptoti-
cally efficient in the presence of microstructure noise. This estimator is defined in
Pigorsh et al [7] as:

(mg.4i4j)
Ul =

*

p mg(K-L+1) (mK,}-i)

y) 1 g
(Lmyc KA Vi
RV, = Z a,
R cp(m—myg(L—1) + 1)< l . p(MKAD)
i=1 j=0 1

with

(mgdy) _ 1/4y(.i _ /450 _

37;jK i) _ g%imk (m / Ylj:j+mg (L 1)]) +g72nK_limK+1 (m / Yj:j+mg L 1)])
and
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L-1

i
yj, the weighted average of the observed returns = Z h <Z) 1;.(+"11)
i=
with L = cv/m + o(m*/*) for some constant ¢ and weight function h on [0; 1].
After carrying out a bias-correction in the above estimator, we get the iid noise-
robust estimator:
Lmg,KA_ (Lmy K2) P
QR = QRVF ™Y — 02
where 1, , 1, are computed by

and

The estimator above converges at rate m~/%. Though the asymptotic variance of the
modified QRV has no explicit expression in terms of 1Q, it can be estimated based on
the estimates of the q4 , ¥, v, terms.

Christensen et al. [24] show that for the weight function h(x) = min (x,1 — x) and
in a constant volatility setting, the estimator achieves a lower bound of 8.563w which is
close to the theoretical bound of the variance of the realized kernel approach. The behav-
iour of the noise robust estimator depends on the choice of L and there is a trades-off
between the noise reduction and the efficiency loss in making this choice due to pre-
averaging. In practice, the estimated signal-to-noise ratio can be used to select L based
on the mean-square error criterion (Pigorsh et al [7]).

2.6 Duration-Based Estimation

The duration-based approach focuses on the time it takes the price process to travel
between fixed price levels. Although it was Cho and Frees [25] who first investigated
this approach for the constant volatility case, a more comprehensive treatment of it was
done by Andersen, Dobrev and Schaumburg [26]. Andersen et al [26] investigated the
duration-based approach in the case of constant volatility and for stochastic volatility
evolving without drift by considering three different ways in which we can measure the
time it takes a Brownian motion to travel a given distance, h. The three measures of du-
ration (also called “passage time”) are:

first exit time : 1, = inf{t > 0| |B;| > h}

irstrangetime : 1, =in {t>0 max B, — min B >h}
f 9 h f lOSsSt S ossst °

first heating time : 7, = inf{t > 0|B, = h}

Using moment generating functions, Andersen et al [26] derived the moments of the
above passage times for the constant volatility case as:
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h2
( 7z (first exit time)
Efr]={ 1 .
lzﬁ (first range time)

o (first hitting time)

Based on the above moment conditions, the authors obtained a method of moments
estimator of volatility using an observed sample of passage times with fixed h (except in
the case of the first hitting time which does not have a first moment). A problem in using
the above moment conditions to estimate a2 is that they can suffer from quite severe
small sample biases induced by Jensen’s inequality. This is because the expected pas-
sage time is inversely proportional to the instantaneous variance” [26, p. 12]. Andersen
showed that for a given sample of passage times of size N

2 1
1+-—+0 (—) (first exit time)

2 3N N?
h 1 1
E T— = ,uiN)GZ where uiN) =<1+ IN +0 (m> (first range time)
N &i=o0 Tih 1 ' N |
{ § (first hitting time))

In view of the above, Andersen proposed a small sample unbiased estimator based on
the first moment of the reciprocal passage times:

h2 2Co? (first exit time)
E [T_h] = w02 =4 (4log 2)c? (first range time)
a?  (first hitting time)

where C=0.916 is the Catalan constant. The moments of the reciprocal passage times
also allow us to define a local volatility estimator for a single passage time using a single
observation transition

1 h?

H1Th

such that integrated variance can also be estimated in the case of stochastic volatility by
applying the Riemann sum.(Pigorsh et al. [7, p. 13]).

In the stochastic volatility case, Andersen et al. [26] showed that the local volatility
estimator can be constructed using either the previous passage time or the next passage
time or both. Thus, the authors identified two independent estimators of local volatility
at time ¢; as follows:

/\2=

Op

1 h? h?
62(t) = =—|—=——<+——| bi — directional
T IO REA
A2 h? 1 A L
o5 (t) = uni — directional

— or ——
piTy (6) M TR (E)

However, they noted that “in practice, we do not use the bi-directional estimators due
to censoring issues. Instead we use the uni-directional estimator based on 7 (t;) for grid
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points t; that fall in the first half of the trading day and t (t;) for grid points falling in
the second half of the trading day”. (Andersen, et al, 2009, p 19). This suggestion “is
based on their simulation results for exit and range passage times showing that left and
right censoring can be ignored, if the difference in time to the market opening and clos-
ing is 2 to 3 times longer than the expected passage times.” [7]. The censoring problem
mentioned above is induced by market closures “In particular, the expected next passage
time is affected by the time left until the market closes, (right censoring), while the ex-
pected previous passage time is limited by the time the market opened, (left censoring).”
[7, p. 14].

By using a sequence of local variance estimates, {62(¢;)}i = 1, ... N based on pas-
sage time durations, Andersen et al. [30] constructed the estimate of IV on [0,1] as:

N-1

DRVp = ) 37 (t) Ay

i=1
with A; =% denoting the times between the intraday observations in the case of an

equispaced time grid.
The asymptotic distribution of the DRV is given as:

1
VN(DRVy, — IV)~Mixed Normal (O, v f o du)
0

where v is a constant that is specific to the type of passage time used in the estimation
and that is independent of the choice of h. (Pigorsh et al. [7]). The integrated quarticity
of the estimator can be consistently estimated as:

N
DRVyp = » (B)" A
i=1

to enable the calculation of confidence bands for IV (Andersen et al. [26]).

The asymptotic efficiency of the DRV is higher than that of the return-based estima-
tors especially if the dataset allows the usage of bi-directional passage times through
non-interrupted trading. However “in practice, the observation record is discrete and we
only observe the value of the process at the N grid points, thus rendering the conver-
gence rate N~1/2 of the estimator DRVj jinfeasible” [26, p. 20]. Andersen therefore
suggest to sample sparsely in order to avoid this potentially more pronounced discreet-
ness effect. DRV based on first range time and on first exit time may be biased, because
the observed times may not be the same as the true ones.

The results of the simulation study of Andersen indicated that the DRV estimator is
sufficiently robust to independent noise with moderate levels of noise-to-signal ratio
even in the case of first range and first exit times. Higher threshold values of r make the
estimator more robust to noise.
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2.7 Jump-Robust Realized Measures

Suppose the log price of a financial asset, p,, follows the continuous-time semi-

martingale jump diffusion process:
N(t)

Py = jo u(s)ds + jo ()W (s) + Z k(s)
=1

where the mean process p(t) is continuous and of finite variation, a(s) > 0 denotes the
cadlag instantaneous volatility, W(t) is a standard Brownian motion and the N(t) process
counts the number of jumps occurring with possibly time-varying intensity A(t) and
jump size k(s;). Given the above, the quadratic variation of p,, can be decomposed into
a component due to continuous variation (integrated variance, or V) and a component
due to jumps (denoted JV):

N(t)

n
t
QV, = pliertZH/j = f a?(s)ds + Z k%(s))
nee i D =
Vg —_—
IVt

A natural estimator of the realized quadratic variation is realized variance or realized
volatility. From the theory of quadratic variation, it follows that the basic RV estimator
converges uniformly in probability to the quadratic variation as the sampling frequency

of the underlying returns approaches infinity:

" N(t)
P
RV, > | o%(s)ds+ Z k?(s;)
-1 j=N(t=1)+1
e V41

(Bollerslev, Kretschmer, Pigorsch &Tauchen [27]).

However , the need to isolate and estimate the integrated variance in the presence of
possible jumps has led to the development of various estimators which attempt to ex-
clude jump variation. The most common realized measures that estimate only the inte-
grated variance, i.e. ‘jump-robust’’ realized measures include:

1) the bi-power variation (BPV) which is defined as :

m
BPV™ =5 1, iy
2 t,j t,j—1

j=2

“For increasingly finely sampled returns, the BPV measure becomes immune to
jumps and consistently (for increasing values of m) estimates the integrated variance”
[27, p.3]. Huang and Tauchen [28] have proposed the relative jump statistic, RJ, =
(RV, — BPV,)RV, ! or its logarithmic version J, = log RV, — log BPV, as a more robust
measure. A problem with the BPV estimator is that it is biased in finite samples. “This
bias arises from the fact that in finite samples the diffusive return does not equal zero
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and thus the jump return is not completely cancelled out. This drives up the estimated
value of IV and creates an upward bias” (Carlston [29, p. 27])

2) the MedRV and MinRV measures. They are the square of the minimum of two
adjacent absolute returns or the median of three adjacent absolute returns. The MedRV
and MinRV measures have higher levels of robustness in the presence of jumps and mi-
crostructure noise compared to the BPV. The MedRV was introduced to deal with out-
liers or wrongly recorded observations™ [11, p. 296].

3) the threshold realized variance developed in Mancini [30, 31]. This estimator is
the sum of squared returns, which are less than a certain threshold. The construction of
this estimator relies on filtering out returns that exceed a certain threshold thus enabling
the elimination of large returns that are the result of jumps in the price process and the
inclusion of only diffusive returns in the estimator. The appropriate choice of threshold
is a major difficulty associated with this estimator.

4) the quantile-based realized variance (QRV) as discussed earlier. In finite samples,
the QRYV estimator performs better than the BPV when there are jumps in the price proc-
ess. It is also consistent and efficient when the observed log price is contaminated by
market microstructure noise.

3. Empirical Evaluation of the Performance of Realized Volatility Estimators

Patton [32] studied the estimation accuracy of the standard RV estimators by com-
bining:

a) two different price series: trade prices and mid-quote prices,

b) two different sampling schemes: calendar-time sampling and tick-time sampling
and

¢) thirteen different sampling frequencies :1, 2, 5, 15, 30 seconds, 1, 2, 5, 15, 30
minutes, 1, 2 hours and the open—close return.

The combination of two price series, two sampling schemes and 13 sampling fre-
quencies resulted in 48 possible RV estimators. The analysis was based on IBM stock
returns data over the period January 1996—June 2007. Patton’s study revealed that for
both sampling schemes, standard RV estimators based on trade prices were positively
biased at very high sampling frequencies while those based on quote prices showed a
negative bias at the same frequencies. The result of the study also indicated that there
was little or no bias at all at lower sampling frequencies (5 minutes and lower) under the
different price series and sampling schemes.

Patton [32] also analysed the performance of the 48 RV estimators identified above
relative to the 5-min calendar-time RV on trade prices. He employed the QLIKE dis-
tance measure to compare the average distance of the 48 RV estimators and 5-min cal-
endar-time RV on trade prices from the latent quadratic variation of the IBM price proc-
ess. The results of his analysis revealed that RV estimators computed on returns sampled
at lower frequencies (30-min or lower) performed poorly than those computed on
higher-frequency data. In particular, the higher frequency based RV estimators had
shorter estimated average distances from the true QV under the random walk (RW) ap-
proximation for the dynamics in QV. Patton found the best-performing estimator to be
the 1-min tick time RV computed on trade prices.
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Patton (2011) further examined the performance of the 48 RV estimators relative to a
““benchmark’ RV estimator using the stepwise multiple testing approach of Romano
and Wolf [33]. The above method helps to pinpoint estimators that are significantly bet-
ter, or worse than a given benchmark estimator [29]. Using the squared open-to-close
return computed using calendar-time trade price as a benchmark RV estimator, Patton
discovered that with the exception of the squared open-to-close quote-price return, all
the other estimators were significantly better than the benchmark at the 0.05 level. How-
ever, he found that the open-to-close quote-price RV estimator was not significantly
different from the open-to-close trade-price RV under both the RW and autoregressive
(AR) approximations for the dynamics in QV.

Also using a 5-min calendar-time trade price RV estimator as a benchmark RV esti-
mator, Patton [32] established that higher-frequency RV estimators were significantly
better than the benchmark RV. In particular, RV estimators computed at 15-s to 2-min
sampling frequencies were significantly better than 5-min RV under the RW approxima-
tion. The result also showed that estimators computed at ultra-high sampling frequencies
(5-s to 1-s) were not significantly different from the benchmark estimator while those
computed at 15-min or lower sampling frequencies were found to be significantly worse
than the 5-min RV estimator.

Under the AR approximation, majority of the estimators were not significantly dif-
ferent from the 5-min calendar-time trade price RV estimator. In particular, all the esti-
mators computed on trade prices sampled in calendar and tick time were no different
from the benchmark RV estimator. It was only RV computed on quote prices sampled in
calendar and tick at frequencies ranging from 5-min to 2-s and 1-min to 5-s respectively
that appeared to be significantly worse than the benchmark RV estimator. This points to
the fact that the benefits from sampling at frequencies higher than 5-min are offset by
the additional estimation error from the AR model.

Patton [32] also compared the performance of the TSRV, MSRV, KRV, RRV and
RV computed using calendar-time trade prices sampled at 1 s, 5 min and 1 day against a
5-min calendar-time trade price RV estimator via a bootstrap version of the Diebold and
Mariano [34] test. For the TSRV, he used one tick as the highest frequency and the op-
timal “‘sparse’” sampling frequency identified in Zhang et al. [9]. For MSRV, he used
one tick as the highest frequency and adopted the formula of Zhang [13] for the frequen-
cies of the other estimates and the weights used to combine these estimates. For the
KRV, he used the modified “Tukey- Hanning," kernel based on 1-min tick-time sam-
pling and adopted the approach in Barndorff-Nielsen et al. [17] to determine the band-
width. For the RRV he used 5-min blocks with 1-min prices within each block. Under
the RW approximation for the dynamics of QV, Patton [32] found that the TSRV,
MSRV, KRV and RRV estimators out-performed the simple 5-min RV estimator. In
particular, the KRV and RRYV estimators appeared to be superior to all the other estima-
tors. However, under the AR approximation, the estimation accuracy of TSRV, MSRV,
KRV, and RRV was not better than the simple 5-min RV estimator.

Bandi and Russell [35] and Bandi, Russell and Zhu [36] employed a reduced-form
model to study the performance of optimally-sampled realized variances (covariances)
and realized variances (covariances) based on ad-hoc sampling intervals in predicting
variances (covariances) out-of-sample. They found that optimally-sampled realized vari-
ances performed better than realized variances based on ad-hoc sampling interval.
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The MIDAS approach of Ghysels, Santa-Clara and Valkanov (2006.) was adopted in
Ghysels and Sinko [37] to assess the performance of realized variance constructed using
fixed intervals, realized variance corrected for bias and power variation. Power variation
was found to be the best performing estimator.

Large [38, 39] analysed the forecasting performance of the alternation estimator and
realized variance based on ad-hoc, fixed intervals by employing the HAR-RV model of
Corsi (2003). The findings indicate that the alternation estimator is superior to realized
variance based on ad-hoc, fixed intervals.

A comparison between the two-scale estimator and realized variance based on differ-
ent simulation set up for stochastic volatility and microstructure noise has been done by
Ait-Sahalia and Mancini [40]. A comparison based on the R? of the Mincer-Zarnowitz
(MZ) regression was also done by the authors. The findings showed that the two scale
estimator performed better than the realized variance both in terms of mean square error
(MSE) and forecasting ability.

Liu, Patton and Sheppard [11] compared various realized variance estimators with
the 5-minute RV estimator. They evaluated 400 different estimators based on 11 years of
data on 31 different financial assets. Based on the testing approach of Romano and Wolf
(2005), they found no evidence that other realized variance estimators performed better
than the benchmark 5-minute RV estimator. However using the model confidence set
approach, they established that the more sophisticated measures (most notably 1-minute
sub-sampled RV, and 1- and 5-second realized kernels and MSRV) outperform it.

Andersen, Bollerslev and Meddahi [41] employed Mincer-Zarnowitz style regression
to assess the performance of alternative realized volatility estimates derived from sto-
chastic volatility models . In Andersen et al. (2006), the R? (of the MZ regression) fig-
ures reported for the one-step-ahead forecasts, showed that the average estimator,
RZ"¢T*9¢, which averages RZ", R;P*"*¢, RTS, RZ"“ and RX®™¢l) dominates uniformly
both as the basis for forecasts and as the proxy for the future realized return variation.

Ghysels and Sinko [42] employed the MIDAS regression to conducted empirical
study of forecasting with microstructure noise using the 30 Dow Jones stocks. The re-
sults of their study revealed that the subsampling and averaging approach represent the
class of estimators that performs best in a prediction context.

Other studies also have examined the forecasting performance of the realized volatil-
ity estimators from the point of view of economic criteria. Two economic metrics (utility
based and profit-based or preference free evaluation) have been applied so far. Bandi
and Russell [43, 44] assessed the forecasting performance of realized volatility estima-
tors based on the long-run utility that a Mean-variance investor would obtain from using
alternative realized volatility forecast in making a portfolio choice. A parallel analysis in
the multivariate case has been done by Bandi and Russell [45] and De Pooter, Martens
and Van Dijk [46]. A comparison of the forecasting performance of the optimally sam-
pled realized volatility estimators and fixed-interval realized volatility measures using
the profit-based evaluation criterion has been done by Bandi and Russell [47]. The re-
sults of these studies showed the optimally sampled realized variance estimators to be
superior to realized variance based on fixed intervals in forecasting volatility. They also
favour the optimized consistent estimators (e.g. two-scale estimator) in out of sample
volatility forecasting.
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Bandi, Russell, and Yang [48] used profit or loss that option dealers would obtain
from trading on the basis of alternative volatility forecasts to evaluate realized volatility
estimators. They adopted a methodology developed in Engle et al. (1990) and as a result
operated in a simulated option market. They found the optimized (in a finite sample)
flat-top kernel estimators to be the best estimators with regard to average profits from
trading and Sharpe ratios. They also found that the near consistent Bartlett kernel esti-
mator, the (bias-corrected and unadjusted) two scale estimator of Zhang et al. (2005) and
the flat-top kernel estimators (when the number of subsamples/autocovariances is care-
fully chosen using finite sample Methods) can perform very well. However, the study
confirmed that the optimally sampled realized variance almost always performed better
than the 5- and 15-min realized variance.

4, Conclusion

At the moment, there is a fairly large number of realized volatility estimators. Each
year, new and more complex methods are introduced. This article reviewed both theo-
retical and empirical literature on the performance of realized measures of quadratic
variation/ integrated variance of financial asset returns so as to facilitate their practical
application in derivative pricing and hedging, asset allocation and day to day risk man-
agement. The results of the review shows that although no single realized measure per-
forms best in all situations and under all circumstances, the more sophisticated realised
measures, in particular the TSRV and KRV are superior to the other estimators in terms
of their estimation accuracy in the presence of market microstructure noise.
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