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Abstract 

Recently, advances in computer technology and data recording and storage have made high-frequency fi-

nancial data readily available to researchers. As a result, the volatility literature has steadily progressed 

toward the use of higher-frequency data. However, the move towards the use of higher-frequency financial 

data in the estimation of volatility of financial returns has resulted in the development of many realised 

volatility measures of asset return variability based on a variety of different assumptions and functional 

forms and thus making theoretical comparison and selection of the estimators for empirical applications 

very difficult if not impossible. This article provides an empirical review on the performance of estimators 

of quadratic variation/integrated variance based on high-frequency data to aid their application in empiri-

cal analysis. The result of the review shows that no single estimator works best in all situations; however, 

the more sophisticated realised measures, in particular the TSRV and KRV, are superior to the other esti-

mators in terms of their estimation accuracy in the presence of market microstructure noise. 
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Аннотация 

В последнее время достижения в области компьютерных технологий, записи и хранения данных 

позволили сделать финансовые данные доступными для исследователей. В результате литература  

о волатильности стала неуклонно развиваться в сторону использования чаще предоставляемых фи-

нансовых данных. Однако переход к использованию финансовых данных с более высокой степе-

нью периодичности при оценке волатильности финансовой доходности привел к разработке мно-

гих реализованных показателей волатильности изменчивости доходности активов, основанных на 

множестве различных допущений и функциональных форм, тем самым крайне затрудняя проведе-

ние теоретических сравнений и выбор оценок для эмпирических приложений. В этой статье пред-

ставлен эмпирический обзор эффективности оценок квадратичной вариации / интегрированной 

дисперсии на основе высокочастотных данных для упрощения их применения в эмпирическом 

анализе. В обзоре показано, что нельзя выделить ни одного их рассмотренных оценщиков, который 

работал бы лучше остальных во всех ситуациях, однако более сложные расчеты оценки волатиль-

ности, в частности на основе TSRV и KRV, превосходят другие аналоги с точки зрения точности 

оценки в присутствии рыночного микроструктурного шума. 
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1. Introduction 

 

“Volatility is central to many applied issues in finance and financial engineering, 

ranging from asset pricing and asset allocation to risk management” [1, p. 106]. Proper 

appreciation of volatility and its dynamics is central to asset pricing. As the main meas-

ure of risk in finance, volatility is important in the determination of optimum portfolios, 

the pricing and hedging of derivative, the determination of a firm’s exposure to various 

risk factors and the compensation it can expect to earn from those risk exposures. Vola-

tility is also important in the search for trading and investment opportunities which guar-

antee an attractive risk-return trade-off. “Traditionally, researchers who wanted to ex-

tract and forecast financial volatility had to rely on data recorded at only moderate 

intervals: daily, for instance, or even monthly. But recently, data at much more frequent 

intervals – high-frequency data – have become increasingly available.” [3, p. 294]. 

High-frequency financial data usually refers to observation sampled at a time horizon 
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smaller than a trading day. Improvement in computer technology and data recording and 

storage have made these data sets readily available to researchers. Consequently, the 

volatility literature has steadily progressed towards the use of higher-frequency data. 

Thus, an exciting new area of research now involves estimating, modelling and forecast-

ing conditional volatility and correlation using high frequency intra-day data. The main 

advantage of using high-frequency financial data to estimate volatility is in the increased 

quality of volatility forecast. High frequency data has been demonstrated to improve our 

ability to understand and forecast financial volatility. 

However, the move towards the use of higher-frequency financial data in the estima-

tion of volatility of financial returns has resulted in the development of numerous real-

ized volatility estimators. These estimators are based on a variety of different assump-

tions about the price process and take many different functional forms. Additionally, the 

new estimators are based on different sampling schemes and price series, for example, 

one may be based upon sampling in calendar time with trade price while another utilizes 

tick time sampling with quote price. Also, some of the realized volatility estimators fur-

ther require choices about tuning parameters such as a kernel bandwidth or ‘‘block size’ 

for their practical application. These, as well as other tractability issues often prohibit the 

theoretical asymptotic comparison of the various estimators. Since it is difficult to theo-

retically compare the different estimators, we must rely on empirical performance of the 

estimators to determine the most appropriate estimator for any given asset or empirical 

application. 

In view of the above, the main goal of this article is to provide an empirical review 

on the performance of estimators of quadratic variation/integrated variance based on 

high-frequency data. In other to achieve the above goal, the following specific objectives 

were established: 

1) to discuss the most popular and the most recent approaches to estimate quadratic 

variation/ integrated variance based on various characteristics of high-frequency finan-

cial data; 

2) to summarize the asymptotic properties of the realized volatility estimators; 

3) to provide an empirical evaluation of the performance of the realized volatility 

estimators based on the result of recent studies. 

This review is particularly important for practitioners and researchers in the areas of 

asset pricing, asset allocation and risk management as far as their empirical analysis are 

concerned. The review in this article differs from existing ones in that, in addition to the 

theoretical review, it also provides an empirical evaluation of the estimation accuracy of 

the realized measures. 

The rest of the paper is organised as follows. Section 2 presents a theoretical review 

of the most popular and the most recent estimators of quadratic variation together with 

their large sample properties. An empirical evaluation of the estimators based on the 

result of recent studies is presented in Section 3. In section 4, we draw conclusion. 

 

2. Review of Estimators of Quadratic Variation/Integrated Variance 

2.1 Realized Volatility (RV) 

 

Let    represent the price process of a financial asset. Let us also assume that the 

process          is governed by an Itô process  
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where    is the drift coefficient,    denotes the instantaneous volatility of    (the returns 

process) and    is a standard Brownian motion. Our aim is to estimate the volatility of 

the log price process given above. When    is assumed to be a (continuous) stochastic 

process, the object of interest is the quadratic variation (QV) or integrated variance (IV), 

                

 

 

 

over a fixed time interval [0, T]. According to the volatility literature (see [4,5,6] etc, for 

example), a natural estimator of       , for example, over a single time interval [0,T] is 

realized volatility or realized variance (RV) which is defined as the sum of all the 

squared intraday log returns in [0,T] 

              
    

 
 

 

   

 

The above estimator is justified by the theoretical results in stochastic processes stat-

ing that  

           
    

 
 

 

   

     
 

 

 

   

as the sampling frequency increases. Thus, according to the above theory, realized vola-

tility constructed from the highest-frequency data should give the best possible estimate 

for integrated volatility.  

Andersen [5] showed that the realized variance computed using all data available is a 

consistent estimator of IV in the absence of market microstructure noise such that 

   
      

    . Barndor-Nielsen and Shephard [6] showed the consistency of the RV es-

timator and derived its asymptotic distribution as: 

   

 

     

    
        

 
        

with 

               

 

 

 

denoting the integrated quarticity (IQ). To facilitate the application of the above asymp-

totic result, Barndor_Nielsen and Shephard [7] introduced the concept of realized power 

variation that allows us to estimate IQ via the realized quarticity (RQ): 
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such that  

   

 

  
 

   
   

             
 
        

can be used for large n. 

 

2.2 Two Scales Realized Volatility (TSRV) Estimator 

 

Although realized volatility consistently estimate the price variation accumulated 

over some time interval, its consistency hinges on increasingly finer sampled high-

frequency returns. In practice, the sampling frequency is limited by the actual quotation 

or transaction frequency. Moreover the very high frequency prices are contaminated by 

market microstructure effects such as bid-ask bounce effects, price discreteness etc., 

leading to biases in realized volatility (Pigorsch, Pigorsch, Popov [7], Andersen et al. 

[4]; Barndorff-Nielsen and Shephard [8]). 

According to the high frequency volatility literature (see for example [2], [7], [9] 

[10]), when the observed log price at time t,   , is contaminated by market microstruc-

ture noise or measurement error,    can be taught of as comprising of a latent efficient / 

true price,    , and a microstructure noise,   , that is:  

         

As before, our interest is to estimate the quadratic variation,                 
 

 
 

over a fixed time period [0, T]. A natural estimator of        is realized volatility  

              
    

 
 

 

   

 

In the absence of microstructure noise,        is a consistent estimator of       . 

However,    is contaminated by market microstructure noise and ignoring the noise will 

lead to serious problems. With microstructure noise, after suitable scaling, RV con-

structed from the observed log-returns is a consistent and asymptotically normal estima-

tor but of the quantity         instead of       , the object of interest. 

Zhang, Mykland and Aït-Sahalia [9] introduced the Two Scales Realized Volatility 

(TSRV) to consistently estimate        (quadratic variation) in the presence of market 

microstructure noise. The construction of the TSRV estimator is based on subsampling, 

averaging and bias-correction. The estimator computes a “subsampled RV on one or 

more slower time scales and then combine with RV constructed on a faster time scale to 

correct bias due to microstructure noise.” [11, p. 3]. Aït-Sahalia and Yu [2] identified the 

following steps in the construction of the TSRV estimator: 

1) First we partition the original grid of observation times,             into sub-

samples,                                    For example, for     start at 

the first observation and take an observation every 5 minutes; for     , start at the sec-

ond observation and take an observation every 5 minutes, etc. 
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2) Next, we average the RVs computed for each subsample. So far as there is a ben-

efit to subsampling, this benefit can be maintained while the variation in the estimator is 

reduced through averaging. Averaging over the subsamples the estimators,       
  , re-

sults in the average realised volatility estimator: 

      
   

 
 

 
       

 

 

   

 

3) Finally, we correct bias using realized volatility constructed from all the available 

intraday returns, that is       
   . The average realized volatility estimator is biased so  

a bias correction is carried out using realized volatility constructed from all observations. 

Following the above steps, the TSRV can be expressed in the following form:  

      
 
           

   
     

               

 
  

 
      

   
     

               

 

The TSRV estimator utilizes all the return data available in its estimation but still 

gives consistent estimates of both        and       . The estimator is a consistent and 

asymptotically unbiased estimator of quadratic variation under the independent noise 

assumption. It has the rate of convergence      . Given an optimal number of subsam-

ples   , determined as ,          , the asymptotic distribution of the estimator under 

IID noise structure assumption is given by 

      
 
                   

                  

 
 

    
 

 

  
      

       
            

  
  

  
   

 

 

 

  

                     

 

   

                       
              

        

where 

   
 

         
   

      

    

 

in the case of equidistant observations. For small samples, a refinement to     
  can be 

obtained as 

      
 
           

    
  

 
 

  

      
 
     

The estimators above are obtained under IID noise structure assumption. In order to 

account for possibly dependent noise, Ait-Sahalia, Mykland and Zhang [12] and Zhang 

[13] introduced a generalized version of the TSRV estimator also based on the two time 

scales idea. In order to obtain the generalized TSRV estimator, we first have to define 

the average lag J RV,      
    

  as shown below. 
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Next, we construct the generalized TSRV estimator as follows 

   
     

      
   

   
   

   
   

     
    

 

with    
   

 
      

 
    

   
 

      

 
         . The adjusted estimator for small 

sample is given by 

   
         

    
   

   

   
   

 

  

   
     

 

In order to account for serial correlation in the noise, the RVs in the generalized 

TSRV estimator above are based on overlapping J-period intraday returns (Pigorsch 

[7]). The generalized TSRV estimator is consistent and asymptotically unbiased under 

time-dependent noise. However, it has a convergence rate of       which is below the 

optimal convergence rate of       in the fully parametric case. This led to the introduc-

tion of the multiple time scale estimator (MSRV) by Ait-Sahalia [2]. The multiple time 

scale estimator is based on the weighted average of average lag-J RVs computed over 

different multiple scales. For suitably selected weights, it attains the optimal conver-

gence rate       (Pigorsch [7]) 

 

2.3 Kernel-Based Estimators 

 

The Kernel-based approach to estimating integrated variance was first used by Zhou 

[14] to deal with the problem of microstructure noise in high-frequency data. It was later 

generalized by Hansen and Lunde [15]. Hansen and Lunde [15] studied the properties of 

Zhou’s estimator and showed that, although unbiased under IID noise structure assump-

tion, the estimator is not consistent. As a result, they proposed to estimate IV by: 

       
          

 

   

 

   

 
 
 

with    
 

   
   

   
    

    
    

The bias correction factor,        , in the above estimator increased the variance 

of the estimator, so Hansen and Lunde [15] replaced it by the Bartlett kernel and defined 

the new estimator as: 
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where     
   

   
      and     is defined as earlier. Nevertheless, their estimator too was 

inconsistent.  

A class of consistent kernel based estimators called realized kernels have been de-

veloped by Barndor-Nielsen, Hansen, Lunde, and Shephard [16]. The realized kernels 

are divided into the flat-top and non-flat-top realized kernels. The flat-top realized kernel 

of Barndor-Nielsen [16] can be defined as: 

     
             

   

 

 

   

             

where           [0; 1] is a deterministic weight function. If k (0) = 1, k (1) = 0 and  

H =      , the estimator is asymptotically mixed normal and converges at rate      

(Barndorff-Nielsen [17]). The constant c is a function of the kernel and the integrated 

quarticity and is chosen such that the asymptotic variance of the estimator is minimized. 

For the flat-top Bartlett kernel where           the      
    estimator has the 

same asymptotic distribution as the TSRV estimator of Zhang et al.[9] while in the case 

of a cubic kernel where               , its asymptotic distribution is similar to 

that of the multiple time scale estimator. For smooth kernel functions where  

H                            , the asymptotic distribution of the estimator is 

mixed normal with the convergence rate of     . 

The non flat-top realized kernels were introduced for practical application. These re-

alised kernels can be defined as: 

      
             

 

 
 

 

   

          

with a convergence rate equal to       and a small asymptotic bias: 

           
       

  
                            

where    denotes stable convergence and    a mixed normal distribution. Though the 

non flat-top realized kernels are robust to serial dependent noise and to dependence be-

tween noise and efficient price, they have a lower convergence rate (     ). The optimal 

bandwidth, H, for the non-fat-top realized kernels is given by:  

                   
       

  
 

   

        
  

   
 , 

where    is the signal-to-noise ratio.  

The optimal value of H is larger if the variance of the microstructure noise is large in 

comparison to the integrated quarticity. 

A Parzen kernel that is smooth and always produces non-negative estimates has also 

been suggested by Barndor-Nielsen et al. [21]. This kernel is given by: 
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For the Parzen kernel,           

 

2.4 Range-Based Estimation 

 

The range-based estimator of volatility has been developed since the 1950s. The es-

timator is based on the extremes from the entire price path and as a result provides more 

information than returns sampled at fixed time intervals (Christensen and Podolskij [18]; 

Pigorsch et al. [7]). It has been found that the squared range based on the daily high and 

low is about five times more efficient than the daily squared return but however less 

efficient than RV based on a sampling frequency higher than two hours (Pigorsch, et al. 

[7]). 

Christensen et al. [18] have suggested a realized range-based estimator that replaces 

the squared intraday returns by normalized squared.  By decomposing the daily time 

interval into   non-overlapping intervals of size,    they obtained the realized range-

based estimator as: 

    
  

 

    
           

 

   

 

where                                                   denotes the observed 

range over the ith interval and            
  .     is the     moment of the range of a 

standard Brownian motion over a unit interval, with m observed increments and 

                            is the range of a standard Brownian motion.  

In the estimator above, it is assume that the (log) price process follows a continuous 

semimartingale and that     equidistant prices are observed discretely over a day. 

Also because it is assume that the prices are observed discretely, the estimator is biased 

downwards. The factor,     , in the estimator is therefore meant to correct for the 

downward bias arising from discretely observed data. 

The estimator above has certain advantages over the previous return-and range-based 

methods. “    
 inspects all data points (regardless of m), whereby we avoid neglecting 

information about integrated variance. Second, the efficiency of     
  is several times 

that of RV, leading to narrower confidence intervals for integrated variance” [18,  

p. 329]. 

The efficiency of the     
 estimator depends on the variance factor, Λ.  

For       the factor is about 0.7. For continuously observed prices, the factor is 0.4 

such that RRV is five times more efficient than RV. For      the efficiency of RV is 

obtained [18]. 

Market microstructure noise corrections of range-based volatility estimators have 

been proposed by Martens and van Dijk [19] and Christensen, Podolskij and Vetter [20]. 

Although bias correction is not as straightforward as in the case of using squared returns, 

Christensen et al. [20] suggest that bias reduction can be achieved by imposing simple 
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parametric assumptions on the distribution of the noise process and sampling at a one to 

two minutes’ frequency. 

 

2.5 Quantile- Based Estimation 

 

The quantile-based approach dates back to Pearson [21], Mosteller [22], Eisenberger 

and Posner [23]. These estimators are based on the quantiles of the log returns rather 

than the returns themselves; that is, they estimate volatility based on the sample return 

quantiles. These estimators exploit the fundamental relationship between quantiles and 

the variance of the normal distribution. For example, the 95% quantile of an iid Gaus-

sian distribution with zero mean and variance    is 1.645σ. So to estimate volatility 

based on  the quantiles of the log returns, we can invert this relationship. (Christensen, 

Oomen and Podolskij [24]). 

Christensen et al (2009) have developed a quantile-based realized variance (QRV) 

that combines multiple quantiles for each of the    intraday subintervals. Construction 

of this estimator involves splitting the sample into K non-overlapping blocks with    

returns and then the construction of the estimator using the sample quantiles of each of 

the K subsamples. The QRV of Christensen et al [24] is defined as: 

             
 

 
   

 
    

 
 

       

  
       

 
     for           , 

where 

             
 
 is a non-negative vector of quantile weights, with the absolute 

values summing to unity; 

  
 

           

                                                        

    is 

the realized squared symmetric     quantile of the (scaled) subsample j; 

             
 
 is a vector of p return quantiles; 

          is a function that extracts the     order statistic from a vector x and  

   
         is the scaling factor given by: 

  
      

            
 

              
 
 

 

  with        denoting the     
    or-

der statistic of an independent standard normal sample     
  
   

 (Pigorsh et al [7]). 

Christensen et al (24) showed that the above estimator is consistent and robust to 

jump as    . They noted that “as the number of blocks increases, they cover an in-

creasingly short interval so that in the limit and under weak assumptions on the price 

process, each block contains at most one jump and volatility within the block is locally 

constant” (Christensen et al, [24], p 75). The term  
 

         
         provides an estima-

tor of the (scaled) return variation over the jth block and the sum across all blocks there-

fore yields a consistent estimator of the IV. [24, p. 75] 

The asymptotic distribution of the QRV is given in Pigorsh et al [7] as 
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where 

                     and the ijth element of the p x p matrix         is given by 

    
          

  

         
   

         

       

  
         

        with 

  

                      
 

              
 
 

 

          
 

               
 

 
 

  

For fixed    and in the absence of noise, Christensen et al [28] showed that QRV 

estimator converges to the IV at rate       while with microstructure noise, the (modi-

fied) estimator converges at rate       Christensen et al.[24] further showed that the 

QRV estimator can be constructed based on overlapping blocks. The authors proved that 

such a subsampled version of the estimator further improves its efficiency. 

Implementation of the QRV requires choices to be made with regard to the number 

of blocks K, or block length,   , the quantiles λ, and the quantile weights α. For a fixed 

set of quantiles and block size, Christensen et al. [24] showed that the optimal quantile 

weights to minimize the asymptotic variance of QRV is given by:  

   
       

  
 

         
  

 
 

where            vector of ones. The selection of quantiles λ can be based on efficiency 

considerations. Christensen et al [24] observed that quantiles near the mode of the distri-

bution are not instructive about the spread of the process while those in the extreme tail 

of the distribution are erratic. They recommend that the optimal choice of quantile 

should balance the above trade-off in order to obtain much information about the vari-

ance of the distribution. As a result, they identified the optimal quantile as those lying in 

the region 0.90 − 0.95.The authors further noted that quantiles outside 0.90-0.95 can be 

used to study the covariance structure of the order statistics when p > 1. Concerning the 

block size, Christensen et al. [24] noted that small block size provide modest efficiency 

gains because they achieve better locality of volatility. However, the gain is insignificant 

when multiple quantiles are employed. 

Christensen et al [24] have also introduced a QRV that is consistent and asymptoti-

cally efficient in the presence of microstructure noise. This estimator is defined in 

Pigorsh et al [7] as: 

     
          

 
 

                
   

 

   

 
     

       

  
       

         

   

 

with 

     

             

                                 

                       

and  
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with               for some constant c and weight function h on [0; 1]. 

After carrying out a bias-correction in the above estimator, we get the iid noise-

robust estimator: 

      
         

=     
          

 
  

    
   

where        are computed by  

        
 

 
    

   

 
  

  

   

 

and 

   
 

 
   

   

   

 
 

 
  

The estimator above converges at rate      . Though the asymptotic variance of the 

modified QRV has no explicit expression in terms of IQ, it can be estimated based on 

the estimates of the           terms.  

Christensen et al. [24] show that for the weight function                  and 

in a constant volatility setting, the estimator achieves a lower bound of        which is 

close to the theoretical bound of the variance of the realized kernel approach. The behav-

iour of the noise robust estimator depends on the choice of L and there is a trades-off 

between the noise reduction and the efficiency loss in making this choice due to pre-

averaging. In practice, the estimated signal-to-noise ratio can be used to select L based 

on the mean-square error criterion (Pigorsh et al [7]). 

 

2.6 Duration-Based Estimation 

 

The duration-based approach focuses on the time it takes the price process to travel 

between fixed price levels. Although it was Cho and Frees [25] who first investigated 

this approach for the constant volatility case, a more comprehensive treatment of it was 

done by Andersen, Dobrev and Schaumburg [26]. Andersen et al [26] investigated the 

duration-based approach in the case of constant volatility and for stochastic volatility 

evolving without drift by considering three different ways in which we can measure the 

time it takes a Brownian motion to travel a given distance,  . The three measures of du-

ration (also called “passage time”) are:  

                                        

                                      
     

      
     

      

                                       

Using moment generating functions, Andersen et al [26] derived the moments of the 

above passage times for the constant volatility case as: 
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Based on the above moment conditions, the authors obtained a method of moments 

estimator of volatility using an observed sample of passage times with fixed   (except in 

the case of the first hitting time which does not have a first moment). A problem in using 

the above moment conditions to estimate    is that they can suffer from quite severe 

small sample biases induced by Jensen’s inequality. This is because the expected pas-

sage time is inversely proportional to the instantaneous variance” [26, p. 12]. Andersen 

showed that for a given sample of passage times of size N 

  
  

 
 

     
   
   

    
   

           
   

  

 
 
 

 
   

 

  
   

 

  
                     

  
 

  
   

 

  
                      

 

 
                         

  

In view of the above, Andersen proposed a small sample unbiased estimator based on 

the first moment of the reciprocal passage times: 

  
  

  
     

   

                       

                            

                             

  

where C≈0.916 is the Catalan constant. The moments of the reciprocal passage times 

also allow us to define a local volatility estimator for a single passage time using a single 

observation transition 

   
  

 

  

  

  
 

such that integrated variance can also be estimated in the case of stochastic volatility by 

applying the Riemann sum.(Pigorsh et al. [7, p. 13]). 

In the stochastic volatility case, Andersen et al. [26] showed that the local volatility 

estimator can be constructed using either the previous passage time or the next passage 

time or both. Thus, the authors identified two independent estimators of local volatility 

at time    as follows: 

    
      

 

   
 

  

  
     

 
  

  
     

                     

   
      

 

  

  

  
     

  
 

  

  

  
     

                     

However, they noted that “in practice, we do not use the bi-directional estimators due 

to censoring issues. Instead we use the uni-directional estimator based on   
      for grid 
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points    that fall in the first half of the trading day and   
      for grid points falling in 

the second half of the trading day”. (Andersen, et al, 2009, p 19). This suggestion “is 

based on their simulation results for exit and range passage times showing that left and 

right censoring can be ignored, if the difference in time to the market opening and clos-

ing is 2 to 3 times longer than the expected passage times.” [7]. The censoring problem 

mentioned above is induced by market closures “In particular, the expected next passage 

time is affected by the time left until the market closes, (right censoring), while the ex-

pected previous passage time is limited by the time the market opened, (left censoring).” 

[7, p. 14].  

By using a sequence of local variance estimates,     
             based on pas-

sage time durations, Andersen et al. [30] constructed the estimate of IV on [0,1] as: 

    
        

 

   

   

        

with    
 

 
 denoting the times between the intraday observations in the case of an 

equispaced time grid.  

The asymptotic distribution of the DRV is given as:  

       
                            

 
 

 

    

where   is a constant that is specific to the type of passage time used in the estimation 

and that is independent of the choice of   . (Pigorsh et al. [7]). The integrated quarticity 

of the estimator can be consistently estimated as: 

    
          

 
 

   

   

to enable the calculation of confidence bands for IV (Andersen et al. [26]).  

The asymptotic efficiency of the DRV is higher than that of the return-based estima-

tors especially if the dataset allows the usage of bi-directional passage times through 

non-interrupted trading. However “in practice, the observation record is discrete and we 

only observe the value of the process at the N grid points, thus rendering the conver-

gence rate       of the estimator     
   infeasible” [26, p. 20]. Andersen therefore 

suggest to sample sparsely in order to avoid this potentially more pronounced discreet-

ness effect. DRV based on first range time and on first exit time may be biased, because 

the observed times may not be the same as the true ones.  

The results of the simulation study of Andersen indicated that the DRV estimator is 

sufficiently robust to independent noise with moderate levels of noise-to-signal ratio 

even in the case of first range and first exit times. Higher threshold values of r make the 

estimator more robust to noise. 
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2.7 Jump-Robust Realized Measures 

 

Suppose the log price of a financial asset,   , follows the continuous-time semi-

martingale jump diffusion process: 

          
 

 

           
 

 

      

    

   

  

where the mean process      is continuous and of finite variation,      > 0 denotes the 

càdlàg instantaneous volatility, W(t) is a standard Brownian motion and the N(t) process 

counts the number of jumps occurring with possibly time-varying intensity      and 

jump size     ). Given the above, the quadratic variation of   , can be decomposed into 

a component due to continuous variation (integrated variance, or IV) and a component 

due to jumps (denoted JV): 

        
   

       
 

 

   

         
 

        
   

        

    

          
   

 

A natural estimator of the realized quadratic variation is realized variance or realized 

volatility. From the theory of quadratic variation, it follows that the basic RV estimator 

converges uniformly in probability to the quadratic variation as the sampling frequency 

of the underlying returns approaches infinity: 

   

 
         

 

            
     

        

    

                     
     

 

(Bollerslev, Kretschmer, Pigorsch &Tauchen [27]).  

However , the need to isolate and estimate the integrated variance in the presence of 

possible jumps has led to the development of various estimators which attempt to ex-

clude jump variation. The most common realized measures that estimate only the inte-

grated variance, i.e. ‘jump-robust’’ realized measures include:  

1) the bi-power variation (BPV) which is  defined as : 

       
 

 
  

 

   

              

“For increasingly finely sampled returns, the BPV measure becomes immune to 

jumps and consistently (for increasing values of m) estimates the integrated variance” 

[27, p.3]. Huang and Tauchen [28] have proposed the relative jump statistic,     
             

   or its logarithmic version                    as a more robust 

measure. A problem with the BPV estimator is that it is biased in finite samples. “This 

bias arises from the fact that in finite samples the diffusive return does not equal zero 
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and thus the jump return is not completely cancelled out. This drives up the estimated 

value of IV and creates an upward bias” (Carlston [29, p. 27]) 

2) the MedRV and MinRV measures. They are the square of the minimum of two 

adjacent absolute returns or the median of three adjacent absolute returns. The MedRV 

and MinRV measures have higher levels of robustness in the presence of jumps and mi-

crostructure noise compared to the BPV. The MedRV was introduced to deal with out-

liers or wrongly recorded observations” [11, p. 296].  

3) the threshold realized variance developed in Mancini [30, 31]. This estimator is 

the sum of squared returns, which are less than a certain threshold. The construction of 

this estimator relies on filtering out returns that exceed a certain threshold thus enabling 

the elimination of large returns that are the result of jumps in the price process and the 

inclusion of only diffusive returns in the estimator. The appropriate choice of threshold 

is a major difficulty associated with this estimator. 

4) the quantile-based realized variance (QRV) as discussed earlier. In finite samples, 

the QRV estimator performs better than the BPV when there are jumps in the price proc-

ess. It is also consistent and efficient when the observed log price is contaminated by 

market microstructure noise. 

 

3. Empirical Evaluation of the Performance of Realized Volatility Estimators 

 

Patton [32] studied the estimation accuracy of the standard RV estimators by com-

bining:  

a) two different price series: trade prices and mid-quote prices,  

b) two different sampling schemes: calendar-time sampling and tick-time sampling 

and  

c) thirteen different sampling frequencies :1, 2, 5, 15, 30 seconds, 1, 2, 5, 15, 30 

minutes, 1, 2 hours and the open–close return. 

The combination of two price series, two sampling schemes and 13 sampling fre-

quencies resulted in 48 possible RV estimators. The analysis was based on IBM stock 

returns data over the period January 1996–June 2007. Patton’s study revealed that for 

both sampling schemes, standard RV estimators based on trade prices were positively 

biased at very high sampling frequencies while those based on quote prices showed a 

negative bias at the same frequencies. The result of the study also indicated that there 

was little or no bias at all at lower sampling frequencies (5 minutes and lower) under the 

different price series and sampling schemes. 

Patton [32] also analysed the performance of the 48 RV estimators identified above 

relative to the 5-min calendar-time RV on trade prices. He employed the QLIKE dis-

tance measure to compare the average distance of the 48 RV estimators and 5-min cal-

endar-time RV on trade prices from the latent quadratic variation of the IBM price proc-

ess. The results of his analysis revealed that RV estimators computed on returns sampled 

at lower frequencies (30-min or lower) performed poorly than those computed on 

higher-frequency data. In particular, the higher frequency based RV estimators had 

shorter estimated average distances from the true QV under the random walk (RW) ap-

proximation for the dynamics in QV. Patton found the best-performing estimator to be 

the 1-min tick time RV computed on trade prices. 
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Patton (2011) further examined the performance of the 48 RV estimators relative to a 

‘‘benchmark’’ RV estimator using the stepwise multiple testing approach of Romano 

and Wolf [33]. The above method helps to pinpoint estimators that are significantly bet-

ter, or worse than a given benchmark estimator [29]. Using the squared open-to-close 

return computed using calendar-time trade price as a benchmark RV estimator, Patton 

discovered that with the exception of the squared open-to-close quote-price return, all 

the other estimators were significantly better than the benchmark at the 0.05 level. How-

ever, he found that the open-to-close quote-price RV estimator was not significantly 

different from the open-to-close trade-price RV under both the RW and autoregressive 

(AR) approximations for the dynamics in QV. 

Also using a 5-min calendar-time trade price RV estimator as a benchmark RV esti-

mator, Patton [32] established that higher-frequency RV estimators were significantly 

better than the benchmark RV. In particular, RV estimators computed at 15-s to 2-min 

sampling frequencies were significantly better than 5-min RV under the RW approxima-

tion. The result also showed that estimators computed at ultra-high sampling frequencies 

(5-s to 1-s) were not significantly different from the benchmark estimator while those 

computed at 15-min or lower sampling frequencies were found to be significantly worse 

than the 5-min RV estimator. 

Under the AR approximation, majority of the estimators were not significantly dif-

ferent from the 5-min calendar-time trade price RV estimator. In particular, all the esti-

mators computed on trade prices sampled in calendar and tick time were no different 

from the benchmark RV estimator. It was only RV computed on quote prices sampled in 

calendar and tick at frequencies ranging from 5-min to 2-s and 1-min to 5-s respectively 

that appeared to be significantly worse than the benchmark RV estimator. This points to 

the fact that the benefits from sampling at frequencies higher than 5-min are offset by 

the additional estimation error from the AR model. 

Patton [32] also compared the performance of the TSRV, MSRV, KRV, RRV and 

RV computed using calendar-time trade prices sampled at 1 s, 5 min and 1 day against a 

5-min calendar-time trade price RV estimator via a bootstrap version of the Diebold and 

Mariano [34] test. For the TSRV, he used one tick as the highest frequency and the op-

timal ‘‘sparse’’ sampling frequency identified in Zhang et al. [9]. For MSRV, he used 

one tick as the highest frequency and adopted the formula of Zhang [13] for the frequen-

cies of the other estimates and the weights used to combine these estimates. For the 

KRV, he used the modified “     –           kernel based on 1-min tick-time sam-

pling and adopted the approach in Barndorff-Nielsen et al. [17] to determine the band-

width. For the RRV he used 5-min blocks with 1-min prices within each block. Under 

the RW approximation for the dynamics of QV, Patton [32] found that the TSRV, 

MSRV, KRV and RRV estimators out-performed the simple 5-min RV estimator. In 

particular, the KRV and RRV estimators appeared to be superior to all the other estima-

tors. However, under the AR approximation, the estimation accuracy of TSRV, MSRV, 

KRV, and RRV was not better than the simple 5-min RV estimator. 

Bandi and Russell [35] and Bandi, Russell and Zhu [36] employed a reduced-form 

model to study the performance of optimally-sampled realized variances (covariances) 

and realized variances (covariances) based on ad-hoc sampling intervals in predicting 

variances (covariances) out-of-sample. They found that optimally-sampled realized vari-

ances performed better than realized variances based on ad-hoc sampling interval. 
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The MIDAS approach of Ghysels, Santa-Clara and Valkanov (2006.) was adopted in 

Ghysels and Sinko [37] to assess the performance of realized variance constructed using 

fixed intervals, realized variance corrected for bias and power variation. Power variation 

was found to be the best performing estimator. 

Large [38, 39] analysed the forecasting performance of the alternation estimator and 

realized variance based on ad-hoc, fixed intervals by employing the HAR-RV model of 

Corsi (2003). The findings indicate that the alternation estimator is superior to realized 

variance based on ad-hoc, fixed intervals. 

A comparison between the two-scale estimator and realized variance based on differ-

ent simulation set up for stochastic volatility and microstructure noise has been done by 

Aït-Sahalia and Mancini [40]. A comparison based on the    of the Mincer-Zarnowitz 

(MZ) regression was also done by the authors. The findings showed that the two scale 

estimator performed better than the realized variance both in terms of mean square error 

(MSE) and forecasting ability. 

Liu, Patton and Sheppard [11] compared various realized variance estimators with 

the 5-minute RV estimator. They evaluated 400 different estimators based on 11 years of 

data on 31 different financial assets. Based on the testing approach of Romano and Wolf 

(2005), they found no evidence that other realized variance estimators performed better 

than the benchmark 5-minute RV estimator. However using the model confidence set 

approach, they established that the more sophisticated measures (most notably 1-minute 

sub-sampled RV, and 1- and 5-second realized kernels and MSRV) outperform it.  

Andersen, Bollerslev and Meddahi [41] employed Mincer-Zarnowitz style regression 

to assess the performance of alternative realized volatility estimates derived from sto-

chastic volatility models . In Andersen et al. (2006), the    (of the MZ regression) fig-

ures reported for the one-step-ahead forecasts, showed that the average estimator, 

  
       

  which averages   
   ,   

      
,    

  ,   
     and   

      ) dominates uniformly 

both as the basis for forecasts and as the proxy for the future realized return variation. 

Ghysels and Sinko [42] employed the MIDAS regression to conducted empirical 

study of forecasting with microstructure noise using the 30 Dow Jones stocks. The re-

sults of their study revealed that the subsampling and averaging approach represent the 

class of estimators that performs best in a prediction context. 

Other studies also have examined the forecasting performance of the realized volatil-

ity estimators from the point of view of economic criteria. Two economic metrics (utility 

based and profit-based or preference free evaluation) have been applied so far. Bandi 

and Russell [43, 44] assessed the forecasting performance of realized volatility estima-

tors based on the long-run utility that a Mean-variance investor would obtain from using 

alternative realized volatility forecast in making a portfolio choice. A parallel analysis in 

the multivariate case has been done by Bandi and Russell [45] and De Pooter, Martens 

and Van Dijk [46]. A comparison of the forecasting performance of the optimally sam-

pled realized volatility estimators and fixed-interval realized volatility measures using 

the profit-based evaluation criterion has been done by Bandi and Russell [47]. The re-

sults of these studies showed the optimally sampled realized variance estimators to be 

superior to realized variance based on fixed intervals in forecasting volatility. They also 

favour the optimized consistent estimators (e.g. two-scale estimator) in out of sample 

volatility forecasting.  
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Bandi, Russell, and Yang [48] used profit or loss that option dealers would obtain 

from trading on the basis of alternative volatility forecasts to evaluate realized volatility 

estimators. They adopted a methodology developed in Engle et al. (1990) and as a result 

operated in a simulated option market. They found the optimized (in a finite sample) 

flat-top kernel estimators to be the best estimators with regard to average profits from 

trading and Sharpe ratios. They also found that the near consistent Bartlett kernel esti-

mator, the (bias-corrected and unadjusted) two scale estimator of Zhang et al. (2005) and 

the flat-top kernel estimators (when the number of subsamples/autocovariances is care-

fully chosen using finite sample Methods) can perform very well. However, the study 

confirmed that the optimally sampled realized variance almost always performed better 

than  the 5- and 15-min realized variance. 

 

4. Conclusion 

 

At the moment, there is a fairly large number of realized volatility estimators. Each 

year, new and more complex methods are introduced. This article reviewed both theo-

retical and empirical literature on the performance of realized measures of quadratic 

variation/ integrated variance of financial asset returns so as to facilitate their practical 

application in derivative pricing and hedging, asset allocation and day to day risk man-

agement. The results of the review shows that although no single realized measure per-

forms best in all situations and under all circumstances, the more sophisticated realised 

measures, in particular the TSRV and KRV are superior to the other estimators in terms 

of their estimation accuracy in the presence of market microstructure noise.  
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